Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 113976, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507410

RESUMEN

Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.


Asunto(s)
Factor de Transcripción Activador 4 , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Ribosomas , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Humanos , Ribosomas/metabolismo , Sistemas de Lectura Abierta/genética , Estrés Fisiológico , Células HEK293 , Secuencia de Bases
2.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-37502919

RESUMEN

ATF4 is a master transcriptional regulator of the integrated stress response leading cells towards adaptation or death. ATF4's induction under stress was thought to be mostly due to delayed translation reinitiation, where the reinitiation-permissive uORF1 plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations, but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrate that the canonical ATF4 translation start site is substantially leaky-scanned. Thus, ATF4's translational control is more complex than originally described underpinning its key role in diverse biological processes.

3.
Nucleic Acids Res ; 49(15): 8743-8756, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34352092

RESUMEN

Translation reinitiation is a gene-specific translational control mechanism. It is characterized by the ability of short upstream ORFs to prevent full ribosomal recycling and allow the post-termination 40S subunit to resume traversing downstream for the next initiation event. It is well known that variable transcript-specific features of various uORFs and their prospective interactions with initiation factors lend them an unequivocal regulatory potential. Here, we investigated the proposed role of the major initiation scaffold protein eIF4G in reinitiation and its prospective interactions with uORF's cis-acting features in yeast. In analogy to the eIF3 complex, we found that eIF4G and eIF4A but not eIF4E (all constituting the eIF4F complex) are preferentially retained on ribosomes elongating and terminating on reinitiation-permissive uORFs. The loss of the eIF4G contact with eIF4A specifically increased this retention and, as a result, increased the efficiency of reinitiation on downstream initiation codons. Combining the eIF4A-binding mutation with that affecting the integrity of the eIF4G1-RNA2-binding domain eliminated this specificity and produced epistatic interaction with a mutation in one specific cis-acting feature. We conclude that similar to humans, eIF4G is retained on ribosomes elongating uORFs to control reinitiation also in yeast.


Asunto(s)
ARN Helicasas DEAD-box/genética , Factor 3 de Iniciación Eucariótica/genética , Factor 4G Eucariótico de Iniciación/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Codón Iniciador/genética , Factor 4E Eucariótico de Iniciación/genética , Humanos , Sistemas de Lectura Abierta/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética
4.
Mol Cell ; 79(4): 546-560.e7, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32589964

RESUMEN

Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.


Asunto(s)
Complejos Multiproteicos/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Regiones no Traducidas 5' , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Codón Iniciador , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Factores de Iniciación de Péptidos/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 47(21): 11326-11343, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31642471

RESUMEN

Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.


Asunto(s)
Codón de Terminación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Terminación de la Cadena Péptídica Traduccional , Proteínas Ribosómicas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Sitios de Unión/genética , Factor 3 de Iniciación Eucariótica/genética , Organismos Modificados Genéticamente , Terminación de la Cadena Péptídica Traduccional/genética , Unión Proteica , Biosíntesis de Proteínas/genética , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
FEMS Microbiol Rev ; 42(2): 165-192, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29281028

RESUMEN

Protein production must be strictly controlled at its beginning and end to synthesize a polypeptide that faithfully copies genetic information carried in the encoding mRNA. In contrast to viruses and prokaryotes, the majority of mRNAs in eukaryotes contain only one coding sequence, resulting in production of a single protein. There are, however, many exceptional mRNAs that either carry short open reading frames upstream of the main coding sequence (uORFs) or even contain multiple long ORFs. A wide variety of mechanisms have evolved in microbes and higher eukaryotes to prevent recycling of some or all translational components upon termination of the first translated ORF in such mRNAs and thereby enable subsequent translation of the next uORF or downstream coding sequence. These specialized reinitiation mechanisms are often regulated to couple translation of the downstream ORF to various stimuli. Here we review all known instances of both short uORF-mediated and long ORF-mediated reinitiation and present our current understanding of the underlying molecular mechanisms of these intriguing modes of translational control.


Asunto(s)
Bacterias/genética , Eucariontes/genética , Biosíntesis de Proteínas/fisiología , Animales , Bacterias/metabolismo , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética
7.
Nucleic Acids Res ; 45(19): 10948-10968, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28981723

RESUMEN

Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream-in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3-40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3's impact on translational control in eukaryotic cells.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , Animales , Factor 3 de Iniciación Eucariótica/genética , Humanos , Modelos Moleculares , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
RNA Biol ; 14(12): 1660-1667, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-28745933

RESUMEN

Reinitiation after translation of short upstream ORFs (uORFs) represents one of the means of regulation of gene expression on the mRNA-specific level in response to changing environmental conditions. Over the years it has been shown-mainly in budding yeast-that its efficiency depends on cis-acting features occurring in sequences flanking reinitiation-permissive uORFs, the nature of their coding sequences, as well as protein factors acting in trans. We earlier demonstrated that the first two uORFs from the reinitiation-regulated yeast GCN4 mRNA leader carry specific structural elements in their 5' sequences that interact with the translation initiation factor eIF3 to prevent full ribosomal recycling post their translation. Actually, this interaction turned out to be instrumental in stabilizing the mRNA·40S post-termination complex, which is thus capable to eventually resume scanning and reinitiate on the next AUG start site downstream. Recently, we also provided important in vivo evidence strongly supporting the long-standing idea that to stimulate reinitiation, eIF3 has to remain bound to ribosomes elongating these uORFs until their stop codon has been reached. Here we examined the importance of eIF3 and sequences flanking uORF1 of the human functional homolog of yeast GCN4, ATF4, in stimulation of efficient reinitiation. We revealed that the molecular basis of the reinitiation mechanism is conserved between yeasts and humans.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , Factor de Transcripción Activador 4/química , Factor de Transcripción Activador 4/metabolismo , Animales , Factor 3 de Iniciación Eucariótica/química , Humanos , Mamíferos , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
9.
Nucleic Acids Res ; 45(5): 2658-2674, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28119417

RESUMEN

Translation reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream ORFs to prevent recycling of the post-termination 40S subunit in order to resume scanning for reinitiation downstream. Its efficiency decreases with the increasing uORF length, or by the presence of secondary structures, suggesting that the time taken to translate a uORF is more critical than its length. This led to a hypothesis that some initiation factors needed for reinitiation are preserved on the 80S ribosome during early elongation. Here, using the GCN4 mRNA containing four short uORFs, we developed a novel in vivo RNA-protein Ni2+-pull down assay to demonstrate for the first time that one of these initiation factors is eIF3. eIF3 but not eIF2 preferentially associates with RNA segments encompassing two GCN4 reinitiation-permissive uORFs, uORF1 and uORF2, containing cis-acting 5΄ reinitiation-promoting elements (RPEs). We show that the preferred association of eIF3 with these uORFs is dependent on intact RPEs and the eIF3a/TIF32 subunit and sharply declines with the extended length of uORFs. Our data thus imply that eIF3 travels with early elongating ribosomes and that the RPEs interact with eIF3 in order to stabilize the mRNA-eIF3-40S post-termination complex to stimulate efficient reinitiation downstream.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Regulación de la Expresión Génica , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Regiones no Traducidas 5' , Codón de Terminación , Técnicas Genéticas , Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
10.
RNA ; 22(4): 542-58, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26822200

RESUMEN

Translational control in eukaryotes is exerted by many means, one of which involves a ribosome translating multiple cistrons per mRNA as in bacteria. It is called reinitiation (REI) and occurs on mRNAs where the main ORF is preceded by a short upstream uORF(s). Some uORFs support efficient REI on downstream cistrons, whereas some others do not. The mRNA of yeast transcriptional activator GCN4 contains four uORFs of both types that together compose an intriguing regulatory mechanism of its expression responding to nutrients' availability and various stresses. Here we subjected all GCN4 uORFs to a comprehensive analysis to identify all REI-promoting and inhibiting cis-determinants that contribute either autonomously or in synergy to the overall efficiency of REI on GCN4. We found that the 3' sequences of uORFs 1-3 contain a conserved AU1-2A/UUAU2 motif that promotes REI in position-specific, autonomous fashion such as the REI-promoting elements occurring in 5' sequences of uORF1 and uORF2. We also identified autonomous and transferable REI-inhibiting elements in the 3' sequences of uORF2 and uORF3, immediately following their AU-rich motif. Furthermore, we analyzed contributions of coding triplets and terminating stop codon tetranucleotides of GCN4 uORFs showing a negative correlation between the efficiency of reinitiation and efficiency of translation termination. Together we provide a complex overview of all cis-determinants of REI with their effects set in the context of the overall GCN4 translational control.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación Fúngica de la Expresión Génica , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ARN
11.
RNA ; 22(3): 456-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26759455

RESUMEN

The molecular mechanism of stop codon recognition by the release factor eRF1 in complex with eRF3 has been described in great detail; however, our understanding of what determines the difference in termination efficiencies among various stop codon tetranucleotides and how near-cognate (nc) tRNAs recode stop codons during programmed readthrough in Saccharomyces cerevisiae is still poor. Here, we show that UGA-C as the only tetranucleotide of all four possible combinations dramatically exacerbated the readthrough phenotype of the stop codon recognition-deficient mutants in eRF1. Since the same is true also for UAA-C and UAG-C, we propose that the exceptionally high readthrough levels that all three stop codons display when followed by cytosine are partially caused by the compromised sampling ability of eRF1, which specifically senses cytosine at the +4 position. The difference in termination efficiencies among the remaining three UGA-N tetranucleotides is then given by their varying preferences for nc-tRNAs. In particular, UGA-A allows increased incorporation of Trp-tRNA whereas UGA-G and UGA-C favor Cys-tRNA. Our findings thus expand the repertoire of general decoding rules by showing that the +4 base determines the preferred selection of nc-tRNAs and, in the case of cytosine, it also genetically interacts with eRF1. Finally, using an example of the GCN4 translational control governed by four short uORFs, we also show how the evolution of this mechanism dealt with undesirable readthrough on those uORFs that serve as the key translation reinitiation promoting features of the GCN4 regulation, as both of these otherwise counteracting activities, readthrough versus reinitiation, are mediated by eIF3.


Asunto(s)
Oligonucleótidos/genética , Sistemas de Lectura Abierta , ARN de Transferencia/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Codón de Terminación , Citosina/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Nucleic Acids Res ; 42(9): 5880-93, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623812

RESUMEN

One of the extensively studied mechanisms of gene-specific translational regulation is reinitiation. It takes place on messenger RNAs (mRNAs) where main ORF is preceded by upstream ORF (uORF). Even though uORFs generally down-regulate main ORF expression, specific uORFs exist that allow high level of downstream ORF expression. The key is their ability to retain 40S subunits on mRNA upon termination of their translation to resume scanning for the next AUG. Here, we took advantage of the exemplary model system of reinitiation, the mRNA of yeast transcriptional activator GCN4 containing four short uORFs, and show that contrary to previous reports, not only the first but the first two of its uORFs allow efficient reinitiation. Strikingly, we demonstrate that they utilize a similar molecular mechanism relying on several cis-acting 5' reinitiation-promoting elements, one of which they share, and the interaction with the a/TIF32 subunit of translation initiation factor eIF3. Since a similar mechanism operates also on YAP1 uORF, our findings strongly suggest that basic principles of reinitiation are conserved. Furthermore, presence of two consecutive reinitiation-permissive uORFs followed by two reinitiation-non-permissive uORFs suggests that tightness of GCN4 translational control is ensured by a fail-safe mechanism that effectively prevents or triggers GCN4 expression under nutrient replete or deplete conditions, respectively.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Iniciación de la Cadena Peptídica Traduccional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5' , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Nucleic Acids Res ; 42(6): 4123-39, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24423867

RESUMEN

Transfer of genetic information from genes into proteins is mediated by messenger RNA (mRNA) that must be first recruited to ribosomal pre-initiation complexes (PICs) by a mechanism that is still poorly understood. Recent studies showed that besides eIF4F and poly(A)-binding protein, eIF3 also plays a critical role in this process, yet the molecular mechanism of its action is unknown. We showed previously that the PCI domain of the eIF3c/NIP1 subunit of yeast eIF3 is involved in RNA binding. To assess the role of the second PCI domain of eIF3 present in eIF3a/TIF32, we performed its mutational analysis and identified a 10-Ala-substitution (Box37) that severely reduces amounts of model mRNA in the 43-48S PICs in vivo as the major, if not the only, detectable defect. Crystal structure analysis of the a/TIF32-PCI domain at 2.65-Å resolution showed that it is required for integrity of the eIF3 core and, similarly to the c/NIP1-PCI, is capable of RNA binding. The putative RNA-binding surface defined by positively charged areas contains two Box37 residues, R363 and K364. Their substitutions with alanines severely impair the mRNA recruitment step in vivo suggesting that a/TIF32-PCI represents one of the key domains ensuring stable and efficient mRNA delivery to the PICs.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alanina/genética , Sustitución de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Modelos Moleculares , Mutación , Fenotipo , Estructura Terciaria de Proteína , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
PLoS Genet ; 9(11): e1003962, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24278036

RESUMEN

Translation is divided into initiation, elongation, termination and ribosome recycling. Earlier work implicated several eukaryotic initiation factors (eIFs) in ribosomal recycling in vitro. Here, we uncover roles for HCR1 and eIF3 in translation termination in vivo. A substantial proportion of eIF3, HCR1 and eukaryotic release factor 3 (eRF3) but not eIF5 (a well-defined "initiation-specific" binding partner of eIF3) specifically co-sediments with 80S couples isolated from RNase-treated heavy polysomes in an eRF1-dependent manner, indicating the presence of eIF3 and HCR1 on terminating ribosomes. eIF3 and HCR1 also occur in ribosome- and RNA-free complexes with both eRFs and the recycling factor ABCE1/RLI1. Several eIF3 mutations reduce rates of stop codon read-through and genetically interact with mutant eRFs. In contrast, a slow growing deletion of hcr1 increases read-through and accumulates eRF3 in heavy polysomes in a manner suppressible by overexpressed ABCE1/RLI1. Based on these and other findings we propose that upon stop codon recognition, HCR1 promotes eRF3·GDP ejection from the post-termination complexes to allow binding of its interacting partner ABCE1/RLI1. Furthermore, the fact that high dosage of ABCE1/RLI1 fully suppresses the slow growth phenotype of hcr1Δ as well as its termination but not initiation defects implies that the termination function of HCR1 is more critical for optimal proliferation than its function in translation initiation. Based on these and other observations we suggest that the assignment of HCR1 as a bona fide eIF3 subunit should be reconsidered. Together our work characterizes novel roles of eIF3 and HCR1 in stop codon recognition, defining a communication bridge between the initiation and termination/recycling phases of translation.


Asunto(s)
Codón de Terminación/genética , Factor 3 de Iniciación Eucariótica/genética , Terminación de la Cadena Péptídica Traduccional , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Mutación , Unión Proteica , Saccharomyces cerevisiae/genética
15.
PLoS One ; 7(7): e40464, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792338

RESUMEN

The ribosome translates information encoded by mRNAs into proteins in all living cells. In eukaryotes, its small subunit together with a number of eukaryotic initiation factors (eIFs) is responsible for locating the mRNA's translational start to properly decode the genetic message that it carries. This multistep process requires timely and spatially coordinated placement of eIFs on the ribosomal surface. In our long-standing pursuit to map the 40S-binding site of one of the functionally most complex eIFs, yeast multisubunit eIF3, we identified several interactions that placed its major body to the head, beak and shoulder regions of the solvent-exposed side of the 40S subunit. Among them is the interaction between the N-terminal domain (NTD) of the a/TIF32 subunit of eIF3 and the small ribosomal protein RPS0A, residing near the mRNA exit channel. Previously, we demonstrated that the N-terminal truncation of 200 residues in tif32-Δ8 significantly reduced association of eIF3 and other eIFs with 40S ribosomes in vivo and severely impaired translation reinitiation that eIF3 ensures. Here we show that not the first but the next 200 residues of a/TIF32 specifically interact with RPS0A via its extreme C-terminal tail (CTT). Detailed analysis of the RPS0A conditional depletion mutant revealed a marked drop in the polysome to monosome ratio suggesting that the initiation rates of cells grown under non-permissive conditions were significantly impaired. Indeed, amounts of eIF3 and other eIFs associated with 40S subunits in the pre-initiation complexes in the RPS0A-depleted cells were found reduced; consistently, to the similar extent as in the tif32-Δ8 cells. Similar but less pronounced effects were also observed with the viable CTT-less mutant of RPS0A. Together we conclude that the interaction between the flexible RPS0A-CTT and the residues 200-400 of the a/TIF32-NTD significantly stimulates attachment of eIF3 and its associated eIFs to small ribosomal subunits in vivo.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Proteínas Ribosómicas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Técnicas de Inactivación de Genes , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
16.
J Biol Chem ; 287(34): 28420-34, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22718758

RESUMEN

In eukaryotes, for a protein to be synthesized, the 40 S subunit has to first scan the 5'-UTR of the mRNA until it has encountered the AUG start codon. Several initiation factors that ensure high fidelity of AUG recognition were identified previously, including eIF1A, eIF1, eIF2, and eIF5. In addition, eIF3 was proposed to coordinate their functions in this process as well as to promote their initial binding to 40 S subunits. Here we subjected several previously identified segments of the N-terminal domain (NTD) of the eIF3c/Nip1 subunit, which mediates eIF3 binding to eIF1 and eIF5, to semirandom mutagenesis to investigate the molecular mechanism of eIF3 involvement in these reactions. Three major classes of mutant substitutions or internal deletions were isolated that affect either the assembly of preinitiation complexes (PICs), scanning for AUG, or both. We show that eIF5 binds to the extreme c/Nip1-NTD (residues 1-45) and that impairing this interaction predominantly affects the PIC formation. eIF1 interacts with the region (60-137) that immediately follows, and altering this contact deregulates AUG recognition. Together, our data indicate that binding of eIF1 to the c/Nip1-NTD is equally important for its initial recruitment to PICs and for its proper functioning in selecting the translational start site.


Asunto(s)
Codón Iniciador/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Complejos Multiproteicos/metabolismo , Iniciación de la Cadena Peptídica Traduccional/fisiología , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Codón Iniciador/genética , Factor 3 de Iniciación Eucariótica/genética , Complejos Multiproteicos/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
PLoS Genet ; 7(7): e1002137, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21750682

RESUMEN

Reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream uORFs to retain post-termination 40S subunits on mRNA. Its efficiency depends on surrounding cis-acting sequences, uORF elongation rates, various initiation factors, and the intercistronic distance. To unravel effects of cis-acting sequences, we investigated previously unconsidered structural properties of one such a cis-enhancer in the mRNA leader of GCN4 using yeast genetics and biochemistry. This leader contains four uORFs but only uORF1, flanked by two transferrable 5' and 3' cis-acting sequences, and allows efficient reinitiation. Recently we showed that the 5' cis-acting sequences stimulate reinitiation by interacting with the N-terminal domain (NTD) of the eIF3a/TIF32 subunit of the initiation factor eIF3 to stabilize post-termination 40S subunits on uORF1 to resume scanning downstream. Here we identify four discernible reinitiation-promoting elements (RPEs) within the 5' sequences making up the 5' enhancer. Genetic epistasis experiments revealed that two of these RPEs operate in the eIF3a/TIF32-dependent manner. Likewise, two separate regions in the eIF3a/TIF32-NTD were identified that stimulate reinitiation in concert with the 5' enhancer. Computational modeling supported by experimental data suggests that, in order to act, the 5' enhancer must progressively fold into a specific secondary structure while the ribosome scans through it prior uORF1 translation. Finally, we demonstrate that the 5' enhancer's stimulatory activity is strictly dependent on and thus follows the 3' enhancer's activity. These findings allow us to propose for the first time a model of events required for efficient post-termination resumption of scanning. Strikingly, structurally similar RPE was predicted and identified also in the 5' leader of reinitiation-permissive uORF of yeast YAP1. The fact that it likewise operates in the eIF3a/TIF32-dependent manner strongly suggests that at least in yeasts the underlying mechanism of reinitiation on short uORFs is conserved.


Asunto(s)
Factor 3 de Iniciación Eucariótica , Sistemas de Lectura Abierta/genética , ARN Mensajero , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas , Proteínas de Saccharomyces cerevisiae , Región de Flanqueo 5' , Regiones no Traducidas 5' , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
J Biol Chem ; 285(49): 38078-92, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20923774

RESUMEN

Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.


Asunto(s)
ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Yarrowia/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , ADN de Hongos/genética , Dimerización , Proteínas Fúngicas/genética , Humanos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Homología de Secuencia de Aminoácido , Telómero/genética , Proteínas de Unión a Telómeros/genética , Yarrowia/genética
19.
Biochem Biophys Res Commun ; 392(3): 391-6, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20074552

RESUMEN

When expressed in various hosts the taz1(+) gene encoding the fission yeast telomere-binding protein produces two forms of polypeptides: full-length (Taz1p) and truncated (Taz1pDeltaC) version lacking almost entire Myb-domain. Whereas Taz1p binds telomeric DNA in vitro, Taz1pDeltaC forms long filaments unable of DNA binding. The formation of Taz1pDeltaC is a result of neither site-specific proteolysis, nor premature termination of transcription. In silico analysis of the taz1(+) RNA transcript revealed a stem-loop structure at the site of cleavage (cleavage box; CB). In order to explore whether it possesses inherent destabilizing effects, we cloned CB sequence into the open reading frame (ORF) of glutathione-S-transferase (GST) and observed that when expressed in Escherichia coli the engineered gene produced two forms of the reporter protein. The formation of the truncated version of GST was abolished, when CB was replaced with recoded sequence containing synonymous codons thus indicating that the truncation is based on structural properties of taz1(+) mRNA.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Cromosómicas no Histona/genética , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Transcripción Genética
20.
RNA ; 15(4): 546-59, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19223441

RESUMEN

The RNA component of telomerase (telomerase RNA; TER) varies substantially both in sequence composition and size (from approximately 150 nucleotides [nt] to >1500 nt) across species. This dramatic divergence has hampered the identification of TER genes and a large-scale comparative analysis of TER sequences and structures among distantly related species. To identify by phylogenetic analysis conserved sequences and structural features of TER that are of general importance, it is essential to obtain TER sequences from evolutionarily distant groups of species, providing enough conservation within each group and enough variation among the groups. To this end, we identified TER genes in several yeast species with relatively large (>20 base pairs) and nonvariant telomeric repeats, mostly from the genus Candida. Interestingly, several of the TERs reported here are longer than all other yeast TERs known to date. Within these TERs, we predicted a pseudoknot containing U-A.U base triples (conserved in vertebrates, budding yeasts, and ciliates) and a three-way junction element (conserved in vertebrates and budding yeasts). In addition, we identified a novel conserved sequence (CS2a) predicted to reside within an internal-loop structure, in all the budding yeast TERs examined. CS2a is located near the Est1p-binding bulge-stem previously identified in Saccharomyces cerevisiae. Mutational analyses in both budding yeasts S. cerevisiae and Kluyveromyces lactis demonstrate that CS2a is essential for in vivo telomerase function. The comparative and mutational analyses of conserved TER elements reported here provide novel insights into the structure and function of the telomerase ribonucleoprotein complex.


Asunto(s)
Candida/genética , ARN de Hongos/análisis , ARN/análisis , Saccharomycetales/genética , Telomerasa/análisis , Candida/química , Candida/clasificación , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomycetales/química , Saccharomycetales/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...